Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Commun ; 15(1): 2615, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521766

RESUMO

Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Here, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n = 388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a peripherally accessible biomarker of AD pathophysiology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Neuropatologia , Plasma , Emaranhados Neurofibrilares , Autopsia , Proteínas tau , Biomarcadores , Peptídeos beta-Amiloides
2.
Mol Neurodegener ; 19(1): 19, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365825

RESUMO

BACKGROUND: Novel phosphorylated-tau (p-tau) blood biomarkers (e.g., p-tau181, p-tau217 or p-tau231), are highly specific for Alzheimer's disease (AD), and can track amyloid-ß (Aß) and tau pathology. However, because these biomarkers are strongly associated with the emergence of Aß pathology, it is difficult to determine the contribution of insoluble tau aggregates to the plasma p-tau signal in blood. Therefore, there remains a need for a biomarker capable of specifically tracking insoluble tau accumulation in brain. METHODS: NTA is a novel ultrasensitive assay targeting N-terminal containing tau fragments (NTA-tau) in cerebrospinal fluid (CSF) and plasma, which is elevated in AD. Using two well-characterized research cohorts (BioFINDER-2, n = 1,294, and BioFINDER-1, n = 932), we investigated the association between plasma NTA-tau levels and disease progression in AD, including tau accumulation, brain atrophy and cognitive decline. RESULTS: We demonstrate that plasma NTA-tau increases across the AD continuum¸ especially during late stages, and displays a moderate-to-strong association with tau-PET (ß = 0.54, p < 0.001) in Aß-positive participants, while weak with Aß-PET (ß = 0.28, p < 0.001). Unlike plasma p-tau181, GFAP, NfL and t-tau, tau pathology determined with tau-PET is the most prominent contributor to NTA-tau variance (52.5% of total R2), while having very low contribution from Aß pathology measured with CSF Aß42/40 (4.3%). High baseline NTA-tau levels are predictive of tau-PET accumulation (R2 = 0.27), steeper atrophy (R2 ≥ 0.18) and steeper cognitive decline (R2 ≥ 0.27) in participants within the AD continuum. Plasma NTA-tau levels significantly increase over time in Aß positive cognitively unimpaired (ßstd = 0.16) and impaired (ßstd = 0.18) at baseline compared to their Aß negative counterparts. Finally, longitudinal increases in plasma NTA-tau levels were associated with steeper longitudinal decreases in cortical thickness (R2 = 0.21) and cognition (R2 = 0.20). CONCLUSION: Our results indicate that plasma NTA-tau levels increase across the AD continuum, especially during mid-to-late AD stages, and it is closely associated with in vivo tau tangle deposition in AD and its downstream effects. Moreover, this novel biomarker has potential as a cost-effective and easily accessible tool for monitoring disease progression and cognitive decline in clinical settings, and as an outcome measure in clinical trials which also need to assess the downstream effects of successful Aß removal.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteínas tau , Peptídeos beta-Amiloides , Atrofia , Biomarcadores , Progressão da Doença , Tomografia por Emissão de Pósitrons
3.
Mol Neurodegener ; 19(1): 2, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185677

RESUMO

BACKGROUND: Antibody-based immunoassays have enabled quantification of very low concentrations of phosphorylated tau (p-tau) protein forms in cerebrospinal fluid (CSF), aiding in the diagnosis of AD. Mass spectrometry enables absolute quantification of multiple p-tau variants within a single run. The goal of this study was to compare the performance of mass spectrometry assessments of p-tau181, p-tau217 and p-tau231 with established immunoassay techniques. METHODS: We measured p-tau181, p-tau217 and p-tau231 concentrations in CSF from 173 participants from the TRIAD cohort and 394 participants from the BioFINDER-2 cohort using both mass spectrometry and immunoassay methods. All subjects were clinically evaluated by dementia specialists and had amyloid-PET and tau-PET assessments. Bland-Altman analyses evaluated the agreement between immunoassay and mass spectrometry p-tau181, p-tau217 and p-tau231. P-tau associations with amyloid-PET and tau-PET uptake were also compared. Receiver Operating Characteristic (ROC) analyses compared the performance of mass spectrometry and immunoassays p-tau concentrations to identify amyloid-PET positivity. RESULTS: Mass spectrometry and immunoassays of p-tau217 were highly comparable in terms of diagnostic performance, between-group effect sizes and associations with PET biomarkers. In contrast, p-tau181 and p-tau231 concentrations measured using antibody-free mass spectrometry had lower performance compared with immunoassays. CONCLUSIONS: Our results suggest that while similar overall, immunoassay-based p-tau biomarkers are slightly superior to antibody-free mass spectrometry-based p-tau biomarkers. Future work is needed to determine whether the potential to evaluate multiple biomarkers within a single run offsets the slightly lower performance of antibody-free mass spectrometry-based p-tau quantification.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Proteínas Amiloidogênicas , Imunoensaio , Espectrometria de Massas , Biomarcadores
4.
JAMA Neurol ; 81(3): 255-263, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252443

RESUMO

Importance: Phosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer disease (AD) pathology, with p-tau217 considered to have the most utility. However, availability of p-tau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests. Objective: To determine the utility of a novel and commercially available immunoassay for plasma p-tau217 to detect AD pathology and evaluate reference ranges for abnormal amyloid ß (Aß) and longitudinal change across 3 selected cohorts. Design, Setting, and Participants: This cohort study examined data from 3 single-center observational cohorts: cross-sectional and longitudinal data from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort (visits October 2017-August 2021) and Wisconsin Registry for Alzheimer's Prevention (WRAP) cohort (visits February 2007-November 2020) and cross-sectional data from the Sant Pau Initiative on Neurodegeneration (SPIN) cohort (baseline visits March 2009-November 2021). Participants included individuals with and without cognitive impairment grouped by amyloid and tau (AT) status using PET or CSF biomarkers. Data were analyzed from February to June 2023. Exposures: Magnetic resonance imaging, Aß positron emission tomography (PET), tau PET, cerebrospinal fluid (CSF) biomarkers (Aß42/40 and p-tau immunoassays), and plasma p-tau217 (ALZpath pTau217 assay). Main Outcomes and Measures: Accuracy of plasma p-tau217 in detecting abnormal amyloid and tau pathology, longitudinal p-tau217 change according to baseline pathology status. Results: The study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%] and 282 males [35.9%]). High accuracy was observed in identifying elevated Aß (area under the curve [AUC], 0.92-0.96; 95% CI, 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95% CI, 0.84-0.99) across all cohorts. These accuracies were comparable with CSF biomarkers in determining abnormal PET signal. The detection of abnormal Aß pathology using a 3-range reference yielded reproducible results and reduced confirmatory testing by approximately 80%. Longitudinally, plasma p-tau217 values showed an annual increase only in Aß-positive individuals, with the highest increase observed in those with tau positivity. Conclusions and Relevance: This study found that a commercially available plasma p-tau217 immunoassay accurately identified biological AD, comparable with results using CSF biomarkers, with reproducible cut-offs across cohorts. It detected longitudinal changes, including at the preclinical stage.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Feminino , Humanos , Masculino , Doença de Alzheimer/diagnóstico por imagem , Amiloide , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores , Estudos de Coortes , Estudos Transversais , Imunoensaio , Tomografia por Emissão de Pósitrons , Proteínas tau/líquido cefalorraquidiano , Estudos Observacionais como Assunto
5.
Alzheimers Dement ; 20(4): 2340-2352, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38284555

RESUMO

BACKGROUND: We aimed to evaluate the precision of Alzheimer's disease (AD) and neurodegeneration biomarker measurements from venous dried plasma spots (DPSv enous) for the diagnosis and monitoring of neurodegenerative diseases in remote settings. METHODS: In a discovery (n = 154) and a validation cohort (n = 115), glial fibrillary acidic protein (GFAP); neurofilament light (NfL); amyloid beta (Aß) 40, Aß42; and phosphorylated tau (p-tau181 and p-tau217) were measured in paired DPSvenous and ethylenediaminetetraacetic acid plasma samples with single-molecule array. In the validation cohort, a subset of participants (n = 99) had cerebrospinal fluid (CSF) biomarkers. RESULTS: All DPSvenous and plasma analytes correlated significantly, except for Aß42. In the validation cohort, DPSvenous GFAP, NfL, p-tau181, and p-tau217 differed between CSF Aß-positive and -negative individuals and were associated with worsening cognition. DISCUSSION: Our data suggest that measuring blood biomarkers related to AD pathology and neurodegeneration from DPSvenous extends the utility of blood-based biomarkers to remote settings with simplified sampling conditions, storage, and logistics. HIGHLIGHTS: A wide array of biomarkers related to Alzheimer's disease (AD) and neurodegeneration were detectable in dried plasma spots (DPSvenous). DPSvenous biomarkers correlated with standard procedures and cognitive status. DPSvenous biomarkers had a good diagnostic accuracy discriminating amyloid status. Our findings show the potential interchangeability of DPSvenous and plasma sampling. DPSvenous may facilitate remote and temperature-independent sampling for AD biomarker measurement. Innovative tools for blood biomarker sampling may help recognizing the earliest changes of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Plasma , Proteínas Amiloidogênicas , Biomarcadores , Proteínas tau
6.
Acta Neuropathol ; 147(1): 12, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184490

RESUMO

Post-mortem staging of Alzheimer's disease (AD) neurofibrillary pathology is commonly performed by immunohistochemistry using AT8 antibody for phosphorylated tau (p-tau) at positions 202/205. Thus, quantification of p-tau205 and p-tau202 in cerebrospinal fluid (CSF) should be more reflective of neurofibrillary tangles in AD than other p-tau epitopes. We developed two novel Simoa immunoassays for CSF p-tau205 and p-tau202 and measured these phosphorylations in three independent cohorts encompassing the AD continuum, non-AD cases and cognitively unimpaired participants: a discovery cohort (n = 47), an unselected clinical cohort (n = 212) and a research cohort well-characterized by fluid and imaging biomarkers (n = 262). CSF p-tau205 increased progressively across the AD continuum, while CSF p-tau202 was increased only in AD and amyloid (Aß) and tau pathology positive (A+T+) cases (P < 0.01). In A+ cases, CSF p-tau205 and p-tau202 showed stronger associations with tau-PET (rSp205 = 0.67, rSp202 = 0.45) than Aß-PET (rSp205 = 0.40, rSp202 = 0.09). CSF p-tau205 increased gradually across tau-PET Braak stages (P < 0.01), whereas p-tau202 only increased in Braak V-VI (P < 0.0001). Both showed stronger regional associations with tau-PET than with Aß-PET, and CSF p-tau205 was significantly associated with Braak V-VI tau-PET regions. When assessing the contribution of Aß and tau pathologies (indexed by PET) to CSF p-tau205 and p-tau202 variance, tau pathology was found to be the most prominent contributor in both cases (CSF p-tau205: R2 = 69.7%; CSF p-tau202: R2 = 85.6%) Both biomarkers associated with brain atrophy measurements globally (rSp205 = - 0.36, rSp202 = - 0.33) and regionally, and correlated with cognition (rSp205 = - 0.38/- 0.40, rSp202 = - 0.20/- 0.29). In conclusion, we report the first high-throughput CSF p-tau205 immunoassay for the in vivo quantification of tau pathology in AD, and a potentially cost-effective alternative to tau-PET in clinical settings and clinical trials.


Assuntos
Doença de Alzheimer , Humanos , Emaranhados Neurofibrilares , Proteínas Amiloidogênicas , Anticorpos , Biomarcadores
7.
Alzheimers Dement ; 20(2): 1239-1249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975513

RESUMO

INTRODUCTION: Detection of Alzheimer's disease (AD) pathophysiology among individuals with mild cognitive changes and those experiencing subjective cognitive decline (SCD) remains challenging. Plasma phosphorylated tau 217 (p-tau217) is one of the most promising of the emerging biomarkers for AD. However, accessible methods are limited. METHODS: We employed a novel p-tau217 immunoassay (University of Gothenburg [UGOT] p-tau217) in four independent cohorts (n = 308) including a cerebrospinal fluid (CSF) biomarker-classified cohort (Discovery), two cohorts consisting mostly of cognitively unimpaired (CU) and mild cognitively impaired (MCI) participants (MYHAT and Pittsburgh), and a population-based cohort of individuals with SCD (Barcelonaßeta Brain Research Center's Alzheimer's At-Risk Cohort [ß-AARC]). RESULTS: UGOT p-tau217 showed high accuracy (area under the curve [AUC] = 0.80-0.91) identifying amyloid beta (Aß) pathology, determined either by Aß positron emission tomography or CSF Aß42/40 ratio. In individuals experiencing SCD, UGOT p-tau217 showed high accuracy identifying those with a positive CSF Aß42/40 ratio (AUC = 0.91). DISCUSSION: UGOT p-tau217 can be an easily accessible and efficient way to screen and monitor patients with suspected AD pathophysiology, even in the early stages of the continuum.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Encéfalo , Biomarcadores/líquido cefalorraquidiano
8.
Alzheimers Dement ; 20(2): 1284-1297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985230

RESUMO

INTRODUCTION: Blood biomarkers have proven useful in Alzheimer's disease (AD) research. However, little is known about their biological variation (BV), which improves the interpretation of individual-level data. METHODS: We measured plasma amyloid beta (Aß42, Aß40), phosphorylated tau (p-tau181, p-tau217, p-tau231), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) in plasma samples collected weekly over 10 weeks from 20 participants aged 40 to 60 years from the European Biological Variation Study. We estimated within- (CVI ) and between-subject (CVG ) BV, analytical variation, and reference change values (RCV). RESULTS: Biomarkers presented considerable variability in CVI and CVG . Aß42/Aß40 had the lowest CVI (≈ 3%) and p-tau181 the highest (≈ 16%), while others ranged from 6% to 10%. Most RCVs ranged from 20% to 30% (decrease) and 25% to 40% (increase). DISCUSSION: BV estimates for AD plasma biomarkers can potentially refine their clinical and research interpretation. RCVs might be useful for detecting significant changes between serial measurements when monitoring early disease progression or interventions. Highlights Plasma amyloid beta (Aß42/Aß40) presents the lowest between- and within-subject biological variation, but also changes the least in Alzheimer's disease (AD) patients versus controls. Plasma phosphorylated tau variants significantly vary in their within-subject biological variation, but their substantial fold-changes in AD likely limits the impact of their variability. Plasma neurofilament light chain and glial fibrillary acidic protein demonstrate high between-subject variation, the impact of which will depend on clinical context. Reference change values can potentially be useful in monitoring early disease progression and the safety/efficacy of interventions on an individual level. Serial sampling revealed that unexpectedly high values in heathy individuals can be observed, which urges caution when interpreting AD plasma biomarkers based on a single test result.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Proteína Glial Fibrilar Ácida , Biomarcadores , Progressão da Doença , Proteínas tau
9.
Acta Neuropathol ; 147(1): 5, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38159140

RESUMO

Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer's disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD = 69, non-AD = 54) from the Boston University Alzheimer's disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195-205, 212-221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC = 89.8), p-tau231 (AUC = 83.4), and p-tau205 (AUC = 81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR < 1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217 = 15.29, ORp-tau205 = 5.05 and ORp-tau231 = 3.86) and Braak staging (ORp-tau217 = 14.29, ORp-tau205 = 5.27 and ORp-tau231 = 4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Proteínas tau , Autopsia , Biomarcadores
10.
medRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873312

RESUMO

INTRODUCTION: Detection of Alzheimer's disease (AD) pathophysiology among cognitively unimpaired individuals and those experiencing subjective cognitive decline (SCD) remains challenging. Plasma p-tau217 is one of the most promising of the emerging biomarkers for AD. However, accessible methods are limited. METHODS: We employed a novel p-tau217 immunoassay (UGOT p-tau217) in four independent cohorts (n=308) including a cerebrospinal fluid (CSF) biomarker-classified cohort (Discovery), two cohorts consisting mostly of cognitively unimpaired participants (MYHAT and Pittsburgh), and a population-based cohort of individuals with SCD (ß-AARC). RESULTS: UGOT p-tau217 showed high accuracy (AUC= 0.80-0.91) identifying Aß pathology, determined either by Aß positron emission tomography or CSF Aß42/40 ratio. In individuals experiencing SCD, UGOT p-tau217 showed high accuracy identifying those with a positive CSF Aß42/40 ratio (AUC= 0.91). DISCUSSION: UGOT p-tau217 can be an easily accessible and efficient way to screen and monitor patients with suspected AD pathophysiology, even in the early stages of the continuum.

11.
medRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502842

RESUMO

Importance: Phosphorylated tau (pTau) is a specific blood biomarker for Alzheimer's disease (AD) pathology, with pTau217 considered to have the most utility. However, availability of pTau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests. Objective: To determine the utility of a novel and commercially available Single molecule array (Simoa) for plasma pTau217 (ALZpath) to detect AD pathology. To evaluate references ranges for abnormal Aß across three selected cohorts. Design Setting Participants: Three single-centre observational cohorts were involved in the study: Translational Biomarkers in Aging and Dementia (TRIAD), Wisconsin Registry for Alzheimer's Prevention (WRAP), and Sant Pau Initiative on Neurodegeneration (SPIN). MRI, Aß-PET, and tau-PET data were available for TRIAD and WRAP, while CSF biomarkers were additionally measured in a subset of TRIAD and SPIN. Plasma measurements of pTau181, pTau217 (ALZpath), pTau231, Aß42/40, GFAP, and NfL, were available for all cohorts. Longitudinal blood biomarker data spanning 3 years for TRIAD and 8 years for WRAP were included. Exposures: MRI, Aß-PET, tau-PET, CSF biomarkers (Aß42/40 and pTau immunoassays) and plasma pTau217 (ALZpath Simoa). Main Outcomes and Measures: The accuracy of plasma pTau217 for detecting abnormal amyloid and tau pathology. Longitudinal pTau217 change according to baseline pathology status. Results: The study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%]) were included in the study. High accuracy was observed in identifying elevated Aß (AUC, 0.92-0.96; 95%CI 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95%CI 0.84-0.99) across all cohorts. These accuracies were significantly higher than other plasma biomarker combinations and comparable to CSF biomarkers. The detection of abnormal Aß pathology using binary or three-range references yielded reproducible results. Longitudinally, plasma pTau217 showed an annual increase only in Aß-positive individuals, with the highest increase observed in those with tau-positivity. Conclusions and Relevance: The ALZpath plasma pTau217 Simoa assay accurately identifies biological AD, comparable to CSF biomarkers, with reproducible cut-offs across cohorts. It detects longitudinal changes, including at the preclinical stage, and is the first widely available, accessible, and scalable blood test for pTau217 detection.

12.
Alzheimers Dement ; 19(12): 5620-5631, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37294682

RESUMO

INTRODUCTION: Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. METHODS: We measured longitudinal changes in plasma amyloid-beta (Aß)42/40 ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with Aß and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. RESULTS: Aß42/40 ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) ε4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both Aß-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. DISCUSSION: Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD. HIGHLIGHTS: Longitudinal increase of plasma pTau181 and glial fibrillary acidic protein (GFAP) can be measured in the preclinical phase of AD. Apolipoprotein E Îµ4 carriers experience faster increase in plasma pTau181 over time than non-carriers. Female sex showed accelerated increase in plasma GFAP over time compared to males. Aß42/40 and pTau231 values are already abnormal at baseline in individuals with both amyloid and tau PET burden.


Assuntos
Doença de Alzheimer , Masculino , Feminino , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Proteína Glial Fibrilar Ácida , Plasma , Peptídeos beta-Amiloides , Biomarcadores , Tomografia por Emissão de Pósitrons , Proteínas tau
13.
Alzheimers Dement ; 19(12): 5343-5354, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37190913

RESUMO

INTRODUCTION: Fluid biomarkers capable of specifically tracking tau tangle pathology in vivo are greatly needed. METHODS: We measured cerebrospinal fluid (CSF) and plasma concentrations of N-terminal tau fragments (NTA-tau), using a novel immunoassay (NTA) in the TRIAD cohort, consisting of 272 individuals assessed with amyloid beta (Aß) positron emission tomography (PET), tau PET, magnetic resonance imaging (MRI) and cognitive assessments. RESULTS: CSF and plasma NTA-tau concentrations were specifically increased in cognitively impaired Aß-positive groups. CSF and plasma NTA-tau concentrations displayed stronger correlations with tau PET than with Aß PET and MRI, both in global uptake and at the voxel level. Regression models demonstrated that both CSF and plasma NTA-tau are preferentially associated with tau pathology. Moreover, plasma NTA-tau was associated with longitudinal tau PET accumulation across the aging and Alzheimer's disease (AD) spectrum. DISCUSSION: NTA-tau is a biomarker closely associated with in vivo tau deposition in the AD continuum and has potential as a tau tangle biomarker in clinical settings and trials. HIGHLIGHTS: An assay for detecting N-terminal tau fragments (NTA-tau) in plasma and CSF was evaluated. NTA-tau is more closely associated with tau PET than amyloid PET or neurodegeneration. NTA-tau can successfully track in vivo tau deposition across the AD continuum. Plasma NTA-tau increased over time only in cognitively impaired amyloid-ß positive individuals.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Emaranhados Neurofibrilares/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico
14.
Nat Aging ; 3(6): 661-669, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198279

RESUMO

Blood phosphorylated tau (p-tau) biomarkers, at differing sites, demonstrate high accuracy to detect Alzheimer's disease (AD). However, knowledge on the optimal marker for disease identification across the AD continuum and the link to pathology is limited. This is partly due to heterogeneity in analytical methods. In this study, we employed an immunoprecipitation mass spectrometry method to simultaneously quantify six phosphorylated (p-tau181, p-tau199, p-tau202, p-tau205, p-tau217 and p-tau231) and two non-phosphorylated plasma tau peptides in a total of 214 participants from the Paris Lariboisière and Translational Biomarkers of Aging and Dementia cohorts. Our results indicate that p-tau217, p-tau231 and p-tau205 are the plasma tau forms that best reflect AD-related brain changes, although with distinct emergences along the disease course and correlations with AD features-amyloid and tau. These findings support the differential association of blood p-tau variants with AD pathology, and our method offers a potential tool for disease staging in clinical trials.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Doença de Alzheimer/diagnóstico , Proteínas Amiloidogênicas , Biomarcadores , Encéfalo/patologia , Proteínas tau
15.
Alzheimers Dement ; 19(12): 5531-5540, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37243891

RESUMO

INTRODUCTION: Blood biomarkers accurately identify Alzheimer's disease (AD) pathophysiology and axonal injury. We investigated the influence of food intake on AD-related biomarkers in cognitively healthy, obese adults at high metabolic risk. METHODS: One-hundred eleven participants underwent repeated blood sampling during 3 h after a standardized meal (postprandial group, PG). For comparison, blood was sampled from a fasting subgroup over 3 h (fasting group, FG). Plasma neurofilament light (NfL), glial fibrillary acidic protein (GFAP), amyloid-beta (Aß) 42/40, phosphorylated tau (p-tau) 181 and 231, and total-tau were measured via single molecule array assays. RESULTS: Significant differences were found for NfL, GFAP, Aß42/40, p-tau181, and p-tau231 between FG and PG. The greatest change to baseline occurred for GFAP and p-tau181 (120 min postprandially, p < 0.0001). CONCLUSION: Our data suggest that AD-related biomarkers are altered by food intake. Further studies are needed to verify whether blood biomarker sampling should be performed in the fasting state. HIGHLIGHTS: Acute food intake alters plasma biomarkers of Alzheimer's disease in obese, otherwise healthy adults. We also found dynamic fluctuations in plasma biomarkers concentration in the fasting state suggesting physiological diurnal variations. Further investigations are highly needed to verify if biomarker measurements should be performed in the fasting state and at a standardized time of day to improve the diagnostic accuracy.


Assuntos
Doença de Alzheimer , Adulto , Humanos , Doença de Alzheimer/diagnóstico , Projetos Piloto , Peptídeos beta-Amiloides , Proteínas tau , Biomarcadores , Obesidade , Ingestão de Alimentos
16.
EBioMedicine ; 90: 104547, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37002988

RESUMO

BACKGROUND: The diagnosis of symptomatic Alzheimer's disease is a clinical challenge in adults with Down syndrome. Blood biomarkers would be of particular clinical importance in this population. The astrocytic Glial Fibrillary Acidic Protein (GFAP) is a marker of astrogliosis associated with amyloid pathology, but its longitudinal changes, association with other biomarkers and cognitive performance have not been studied in individuals with Down syndrome. METHODS: We performed a three-centre study of adults with Down syndrome, autosomal dominant Alzheimer's disease and euploid individuals enrolled in Hospital Sant Pau, Barcelona (Spain), Hospital Clinic, Barcelona (Spain) and Ludwig-Maximilians-Universität, Munich (Germany). Cerebrospinal fluid (CSF) and plasma GFAP concentrations were quantified using Simoa. A subset of participants had PET 18F-fluorodeoxyglucose, amyloid tracers and MRI measurements. FINDINGS: This study included 997 individuals, 585 participants with Down syndrome, 61 Familial Alzheimer's disease mutation carriers and 351 euploid individuals along the Alzheimer's disease continuum, recruited between November 2008 and May 2022. Participants with Down syndrome were clinically classified at baseline as asymptomatic, prodromal Alzheimer's disease and Alzheimer's disease dementia. Plasma GFAP levels were significantly increased in prodromal and Alzheimer's disease dementia compared to asymptomatic individuals and increased in parallel to CSF Aß changes, ten years prior to amyloid PET positivity. Plasma GFAP presented the highest diagnostic performance to discriminate symptomatic from asymptomatic groups (AUC = 0.93, 95% CI 0.9-0.95) and its concentrations were significantly higher in progressors vs non-progressors (p < 0.001), showing an increase of 19.8% (11.8-33.0) per year in participants with dementia. Finally, plasma GFAP levels were highly correlated with cortical thinning and brain amyloid pathology. INTERPRETATION: Our findings support the utility of plasma GFAP as a biomarker of Alzheimer's disease in adults with Down syndrome, with possible applications in clinical practice and clinical trials. FUNDING: AC Immune, La Caixa Foundation, Instituto de Salud Carlos III, National Institute on Aging, Wellcome Trust, Jérôme Lejeune Foundation, Medical Research Council, Alzheimer's Association, National Institute for Health Research, EU Joint Programme-Neurodegenerative Disease Research, Alzheimer's Society, Deutsche Forschungsgemeinschaft, Stiftung für die Erforschung von Verhaltens, Fundación Tatiana Pérez de Guzmán el Bueno & European Union's Horizon 2020 und Umwelteinflüssen auf die menschliche Gesundheit.


Assuntos
Doença de Alzheimer , Síndrome de Down , Doenças Neurodegenerativas , Adulto , Humanos , Doença de Alzheimer/metabolismo , Síndrome de Down/epidemiologia , Estudos Longitudinais , Peptídeos beta-Amiloides/metabolismo , Proteína Glial Fibrilar Ácida , Estudos de Coortes , Biomarcadores , Proteínas tau/metabolismo
17.
Alzheimers Res Ther ; 15(1): 48, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899441

RESUMO

BACKGROUND: Cerebrospinal fluid (CSF) p-tau235 is a novel biomarker highly specific of Alzheimer's disease (AD). However, CSF p-tau235 has only been studied in well-characterized research cohorts, which do not fully reflect the patient landscape found in clinical settings. Therefore, in this multicentre study, we investigated the performance of CSF p-tau235 to detect symptomatic AD in clinical settings and compared it with CSF p-tau181, p-tau217 and p-tau231. METHODS: CSF p-tau235 was measured using an in-house single molecule array (Simoa) assay in two independent memory clinic cohorts: Paris cohort (Lariboisière Fernand-Widal University Hospital Paris, France; n=212) and BIODEGMAR cohort (Hospital del Mar, Barcelona, Spain; n=175). Patients were classified by the syndromic diagnosis (cognitively unimpaired [CU], mild cognitive impairment [MCI] or dementia) and their biological diagnosis (amyloid-beta [Aß]+ or Aß -). Both cohorts included detailed cognitive assessments and CSF biomarker measurements (clinically validated core AD biomarkers [Lumipulse CSF Aß1-42/40 ratio, p-tau181 and t-tau] and in-house developed Simoa CSF p-tau181, p-tau217 and p-tau231). RESULTS: High CSF p-tau235 levels were strongly associated with CSF amyloidosis regardless of the clinical diagnosis, being significantly increased in MCI Aß+ and dementia Aß+ when compared with all other Aß- groups (Paris cohort: P ˂0.0001 for all; BIODEGMAR cohort: P ˂0.05 for all). CSF p-tau235 was pronouncedly increased in the A+T+ profile group compared with A-T- and A+T- groups (P ˂0.0001 for all). Moreover, CSF p-tau235 demonstrated high diagnostic accuracies identifying CSF amyloidosis in symptomatic cases (AUCs=0.86 to 0.96) and discriminating AT groups (AUCs=0.79 to 0.98). Overall, CSF p-tau235 showed similar performances to CSF p-tau181 and CSF p-tau231 when discriminating CSF amyloidosis in various scenarios, but lower than CSF p-tau217. Finally, CSF p-tau235 associated with global cognition and memory domain in both cohorts. CONCLUSIONS: CSF p-tau235 was increased with the presence of CSF amyloidosis in two independent memory clinic cohorts. CSF p-tau235 accurately identified AD in both MCI and dementia patients. Overall, the diagnostic performance of CSF p-tau235 was comparable to that of other CSF p-tau measurements, indicating its suitability to support a biomarker-based AD diagnosis in clinical settings.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
18.
medRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168323

RESUMO

Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Thereafter, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n=388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a novel peripherally accessible biomarker of AD pathophysiology.

19.
Mol Neurodegener ; 17(1): 81, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510321

RESUMO

BACKGROUND: Alzheimer's disease is characterized by an abnormal increase of phosphorylated tau (pTau) species in the CSF. It has been suggested that emergence of different pTau forms may parallel disease progression. Therefore, targeting multiple specific pTau forms may allow for a deeper understanding of disease evolution and underlying pathophysiology. Current immunoassays measure pTau epitopes separately and may capture phosphorylated tau fragments of different length depending on the non-pTau antibody used in the assay sandwich pair, which bias the measurement. METHODS: We developed the first antibody-free mass spectrometric method to simultaneously measure multiple phosphorylated epitopes in CSF tau: pT181, pS199, pS202, pT205, pT217, pT231, and pS396. The method was first evaluated in biochemically defined Alzheimer's disease and control CSF samples (n = 38). All seven pTau epitopes clearly separated Alzheimer's disease from non-AD (p < 0.001, AUC = 0.84-0.98). We proceeded with clinical validation of the method in the TRIAD (n = 165) and BioFINDER-2 cohorts (n = 563), consisting of patients across the full Alzheimer's disease continuum, including also young controls (< 40 years), as well as patients with frontotemporal dementia and other neurodegenerative disorders. RESULTS: Increased levels of all phosphorylated epitopes were found in Alzheimer's disease dementia and Aß positron emission tomography-positive patients with mild cognitive impairment compared with Aß-negative controls. For Alzheimer's disease dementia compared with Aß-negative controls, the best biomarker performance was observed for pT231 (TRIAD: AUC = 98.73%, fold change = 7.64; BioFINDER-2: AUC = 91.89%, fold change = 10.65), pT217 (TRIAD: AUC = 99.71%, fold change = 6.33; BioFINDER-2: AUC = 98.12%, fold change = 8.83) and pT205 (TRIAD: AUC = 99.07%, fold change = 5.34; BioFINDER-2: AUC = 93.51%, fold change = 3.92). These phospho-epitopes also discriminated between Aß-positive and Aß-negative cognitively unimpaired individuals: pT217 (TRIAD: AUC = 83.26, fold change = 2.39; BioFINDER-2: AUC = 91.05%, fold change = 3.29), pT231 (TRIAD: AUC = 86.25, fold change = 3.80; BioFINDER-2: AUC = 78.69%, fold change = 3.65) and pT205 (TRIAD: AUC = 71.58, fold change = 1.51; BioFINDER-2: AUC = 71.11%, fold change = 1.70). CONCLUSIONS: While an increase was found for all pTau species examined, the highest fold change in Alzheimer's disease was found for pT231, pT217 and pT205. Simultaneous antibody-free measurement of pTau epitopes by mass spectrometry avoids possible bias caused by differences in antibody affinity for modified or processed forms of tau, provides insights into tau pathophysiology and may facilitate clinical trials on tau-based drug candidates.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/metabolismo , Fosforilação , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...